

DECEMBER 2014 QUARTERLY REPORT

HIGHLIGHTS

- Statistical (random) sampling of all the mine shaft waste dumps for the historical underground mines at Clonbinane has indicated that the Gladys workings have the highest grade halo mineralisation, around twice that for the Apollo workings (4.3 g/t gold versus 2.1 g/t at a 0.5 g/t cut off). It is expected that some of the high grade cores of the numerous lodes (typically grading 1.0 to 2.0 ounces of gold per tonne) remain and will lift the average excavated grade.
- Given the indicated halo mineralisation results, the Company will plan on excavating the Gladys and the adjacent Apollo oxide gold caps at Clonbinane at the same time.
- A series of costeans across the strike of the Wandean gold deposit is planned ahead of trial mining, bulk sampling and heap-leach testwork. The costean work program was approved by the DSDBI during the quarter.
- The Australian Department of Defence has commenced paying quarterly lease payments (currently \$41,250 including GST) to Nagambie Mining under the 20-year agreement to operate an Underwater Explosives Testing Facility at the eastern end of the East Pit at the Nagambie Mine.
- The 1990s open pits at the Nagambie Mine represent ideal underwater sites for potential acid sulphate spoil (PASS) from construction projects in Melbourne and could take a total of around 6.2 million tonnes.
- During the quarter, the Company investigated whether there are any alternative large under-water sites that could accept Melbourne PASS and concluded that none exist. Melbourne PASS can be stored above ground in metropolitan landfill sites but that alternative is a poor environmental outcome and a very expensive solution.

COMMENTARY

The Company Chairman, Mike Trumbull said: "The initial testing at Clonbinane has put the Gladys workings front and centre with an indicated halo mineralisation grade around twice that for the Apollo, Rising Sun / Gentle Annie and Golden Dyke workings.

"Over the next decade, crippling road congestion, sole reliance on the West Gate Bridge and struggling public transport will mean that various tunnels will need to be constructed in and around the Melbourne CBD. The road and rail tunnels currently being contemplated will involve many millions of tonnes of PASS and Nagambie Mining is in the box seat to store it."

30 JANUARY 2015

NAGAMBIE MINING

Nagambie Mining is focussed on the discovery and development of shallow, open-pit and heapleachable gold deposits.

The Company has 100% of tenements encompassing historic Victorian goldfields at Nagambie, Clonbinane, Lancemore, Rushworth and Redcastle.

A preliminary Inferred Resource of 47,000 ounces of gold, 609,000 tonnes at 2.4 g/t, was estimated in 2008 for Clonbinane.

Nagambie Mining is testing new structural and mineralisation concepts for gold mineralisation by employing geological, geophysical and geochemical techniques.

Nagambie Mining is also advancing construction material, landfill and spoil fill opportunities at the Nagambie Mine site in order to maximise the value of the freehold land owned by the Company.

> <u>SHARES ON ISSUE</u> 301,714,010

ASX CODE: NAG

Nagambie Mining Limited ABN 42 111 587 163

Registered, Operations & Head Office 533 Zanelli Road Nagambie Vic 3608 PO Box 339

Tel: (03) 5794 1750 Fax: (03) 5794 1790

www.nagambiemining.com.au info@nagambiemining.com.au

Board

Mike Trumbull (Chairman) Geoff Turner (Exploration Dir.) Kevin Perrin (Finance Dir.) Alfonso Grillo (Company Sec.)

CLONBINANE GOLDFIELD (100% Nagambie Mining Group)

ELs 4460 and 4987 (refer Appendix 1) are approximately halfway between Melbourne and Nagambie, close to the Hume Freeway. Heap-leach testing on Apollo oxide bulk samples by a previous owner has indicated 80% to 85% gold recoveries, very high by industry standards. Nagambie Mining's intention is to excavate the oxide caps of the sulphide bodies at Clonbinane and truck the ore north to the Nagambie Mine for heap-leach treatment.

The Company's initial exploration at Clonbinane got underway in the quarter. Detailed surface geological mapping, surface rock chip sampling and statistical sampling of the surface waste dumps for the historical underground mines were carried out for the Apollo, Gladys, Root Hog, Gentle Annie / Rising Sun, Windsor Castle and Golden Dyke workings (refer Figure 1).

Figure 1 Clonbinane (Sunday Creek) Historical Gold Mines

The results for the statistical (random) sampling of the surface dumps for the historical underground mines were particularly interesting. All mine shaft dumps of significance were sampled randomly over the dump with no apparent bias as to the geology of the samples. The bigger the waste dump, the more samples were taken.

The dumps represent the waste material from the underground mining. The historical miners targeted the high grade central cores of the lodes which typically graded 1.0 to 2.0 ounces of gold per tonne. The waste material hoisted to the surface and placed on the dumps consisted of cross cut material between lodes containing negligible gold and on-strike material in the hangingwall and footwall of the central cores of the lodes which contained halo mineralisation.

Appendix 3 gives the gold assays for the total of 136 random samples taken from all the significant dumps and Appendix 4 is the relevant JORC Table 1. The average gold assays for halo mineralisation for each set of workings, for various cut-off grades, are shown in Table 1.

The Gladys workings have the highest grade halo mineralisation, around twice that for the Apollo workings. Nagambie Mining's initial focus will therefore be on the Gladys workings and the adjacent Apollo workings.

The halo gold mineralisation at Clonbinane is very unusual for Victoria – the typical nuggetty quartz vein style (Bendigo and Ballarat) has little or no mineralisation in the hangingwall or footwall. The diorite dyke intrusions adjacent to the breccia-hosted pyrite and stibnite bearing lodes at Clonbinane have resulted in the sediments (principally siltstone) becoming more brittle and fractured, resulting in broader leakage of the mineralising fluids (quartz, sulphides and gold).

Mine	Total Number of	Gold Cut-Off Grade (g/t)		
Workings	Random Samples	s 0.3 0.5		1.0
Apollo	25	1.7	2.1	2.3
Gladys	35	4.2	4.3	5.3
Golden Dyke	42	1.7	2.0	2.9
Rising Sun / Gentle Annie	25	1.8	2.4	2.5
Root Hog	4	0.9	1.9	1.9
Windsor Castle	5	1.3	1.3	1.3

Table 1 Average Gold Assays (g/t) for Dump Sampling

The next phase of exploration planned at Clonbinane is small-scale trenching or "ditchwitching" of the main areas of interest.

WANDEAN GOLD DEPOSIT (100% Nagambie Mining Group)

The Wandean deposit lies 9 km north west of the Nagambie Mine and 4 km north of the Nagambie township (refer Appendix 1). The Company's intention is to excavate the oxide cap of the sulphide body at Wandean and truck the ore to the Nagambie Mine for heap-leach treatment.

Nagambie Mining submitted a work program during the quarter for costeaning at Wandean and approval has been received. Within a fenced-off area, a series of north-south costeans (trenches) will be excavated to enable detailed channel sampling to be carried out along the west and east walls near the base of each costean.

TENEMENT CHANGES

The Nagambie Mining group's tenements at the end of the quarter are shown in Appendix 1.

EL 5536 to the north of Wandean was applied for and Nagambie Mining has priority. EL 4987 at Clonbinane was selectively reduced in size as required under its licence terms with the Department of State Development, Business and Innovation (DSDBI) (note: from 1 January 2015, DSDBI was incorporated into the new Department of Economic Development, Jobs, Transport and Resources (DEDJTR)).

CONSTRUCTION SPOIL SITES AT THE NAGAMBIE MINE (100% Nagambie Mining Group)

The historic open pits at the Mine represent ideal under-water sites for potential acid sulphate spoil (PASS) from construction projects in Melbourne.

Melbourne PASS can be stored above ground in metropolitan landfill sites but such a solution is a poor environmental outcome (significant management problems and large quantities of PASS would materially impact on Melbourne's dwindling landfill airspace) and a very expensive solution as metropolitan landfill gate fees have increased dramatically over the last decade.

The first proposed site at the Nagambie Mine, the West Pit (refer Photo 1), has a volume of 1.4 million cubic metres below the water surface and could take up to around 2.7 million tonnes of PASS. The second proposed site, the East Pit (refer Photo 2), has an available volume of around 1.8 million cubic metres below the water surface and could take up to around 3.5 million tonnes of PASS.

During the quarter, the Company investigated whether there are any alternative large under-water sites that could accept Melbourne PASS and concluded that none exist.

Over the next decade, crippling road congestion, sole reliance on the West Gate Bridge (built to handle 40,000 vehicles a day but with daily usage currently at 200,000 and projected to grow to 300,000 in a decade) and struggling public transport will mean that various tunnels will need to be constructed in and

around the Melbourne CBD. The road and rail tunnels currently being contemplated will involve the removal and storage of many millions of tonnes of PASS.

West Pit PASS Site at the Nagambie Mine Photo 1

East Pit PASS Site at the Nagambie Mine Photo 2

DEPARTMENT OF DEFENCE UNDERWATER EXPLOSIVES TESTING FACILITY

A significant 20-year lease agreement was signed with the Australian Department of Defence (DOD) in October 2014. The agreement will enable the DOD to establish a secure Underwater Explosives Testing Facility (UETF) at the eastern end of the East Pit at the Nagambie Mine.

The DOD have commenced paying quarterly lease payments (currently \$41,250 including GST) to Nagambie Mining.

The operation of the UETF will not impact on any of the other uses that the Nagambie Mining group is carrying out or planning for the Nagambie Mine, including heap-leach gold production, landfill sites, construction spoil sites, gravel production and sand production.

CORPORATE

At 31 December 2014, total cash held by the Company was \$910,000.

Mike Trumbull Executive Chairman Phone: 0411 430 845 Email: mike@nagambiemining.com.au

STATEMENT AS TO COMPETENCY

The Exploration Results in this report have been compiled by Mr Geoff Turner, who is a Fellow of the Australian Institute of Geoscientists, has more than ten years in the estimation, assessment, and evaluation of mineral resources and ore reserves, and has more than 20 years in exploration for the relevant style of mineralisation that is being reported. In these regards, Geoff Turner qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Geoff Turner is a Director of Nagambie Mining Limited and consents to the inclusion in this report of these matters based on the information in the form and context in which it appears.

FORWARD-LOOKING STATEMENTS

This report contains "forward-looking statements" within the meaning of securities laws of applicable jurisdictions. Forward-looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "believe", "continue", "objectives", "outlook", "guidance" or other similar words, and include statements regarding certain plans, strategies and objectives of management and expected financial performance. These forward-looking statements involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Nagambie Mining and any of its officers, employees, agents or associates. Actual results, performance or achievements may vary materially from any projections and forward-looking statements and the assumptions on which those statements are based. Exploration potential is conceptual in nature, there has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in the determination of a Mineral Resource. Readers are cautioned not to place undue reliance on forward-looking statements and Nagambie Mining assumes no obligation to update such information.

APPENDIX 1

APPENDIX 2

EXPLORATION & DEVELOPMENT OF GOLD ASSETS

The Nagambie Mining group's key gold strategies in Victoria are:

- Focus on Central Victoria, particularly the Melbourne Zone;
- Focus on open-pit gold deposits underground mining costs are fast becoming prohibitive in Victoria;
- · Focus on disseminated, non-nuggetty, oxide, heap-leachable gold;
- Take advantage of the lower capital and operating costs associated with heap leaching;
- Take advantage of the heap-leach facilities remaining from the 1990s operation at the Nagambie Mine truck all ore from the Company's deposits back to the Nagambie Mine for treatment;
- Only take on 100% ownership of gold properties joint ventures are inefficient and expensive;
- Don't take on production royalties royalties become problematic with multiple sources of heapleach ore;
- Don't take on bank project finance banks insist on acting in the interest of their shareholders ahead of the interests of their clients;
- Develop Inferred Resources (under the JORC Code) but not Reserves the money spent on drilling out reserves is better used for dividends to shareholders;
- Focus strongly on mine bench grade control to minimise waste dilution and maximise ore head grade; and
- Use local contractors wherever possible to minimise up-front capital costs and provide operational flexibility – except for mine bench grade control and gold room operations.

Nagambie Mining's preference for exploring and developing gold assets in the Melbourne Zone of Victoria:

- Melbourne Zone is Noted for Disseminated, Non-Nuggetty Gold:
 - ♦ Extremely fine gold couldn't be panned by the "Old Timers" outcrop still exists;
 - ♦ Gold in samples is evenly distributed the opposite of nuggetty;
 - Reliable drilling results for disseminated gold versus problematic drilling of Bendigo and Ballarat-style nuggetty quartz veins;
 - ♦ Reliable evaluation of each open-pit, heap-leachable deposit;
 - ♦ Reliable bench grade control sampling during open-pit mining;
 - Minimal quartz in disseminated oxide deposits can mean no drilling and blasting is required; and
 - ♦ Fine, evenly-distributed gold means excellent heap-leach recovery.
- Melbourne Zone has Outstanding Existing Infrastructure:
 - Hume and Goulburn Valley Freeways connect the Nagambie and Clonbinane Goldfields;
 - Operators for the mining and heap-leach operations could come from Shepparton, Nagambie, Seymour, Broadford, Kilmore, Wallan, Wandong etc; and
 - ♦ Operators would drive themselves to the gates of the operations each day the exact opposite, in terms of costs, of fly-in, fly-out operations in outback Australia.

APPENDIX 3

Results for Mine Shaft Waste Dump Random Sampling at Clonbinane (All assays greater than 0.3 g/t gold highlighted in green)

Sample	East	North	RL		Gold
Number	(MGA)	(MGA)	(AHD)	Location	(g/t)
38152	331078	5867835	302.457	Apollo	2.91
34312	331121	5867770	315.853	Apollo	2.42
38171	331116	5867835	305.903	Apollo	2.27
38155	331100	5867830	305.784	Apollo	2.20
34310	331107	5867780	315.147	Apollo	2.12
38153	331097	5867826	306.395	Apollo	2.06
38162	331094	5867821	306.903	Apollo	0.73
38157	331092	5867821	306.655	Apollo	0.34
38164	331093	5867823	306.427	Apollo	0.27
38154	331101	5867829	305.982	Apollo	0.25
38161	331093	5867820	306.955	Apollo	0.17
38160	331109	5867830	305.987	Apollo	0.17
38158	331095	5867823	306.675	Apollo	0.14
38159	331104	5867830	305.875	Apollo	0.11
38172	331130	5867829	306.942	Apollo	0.09
38156	331094	5867829	305.495	Apollo	0.06
38173	331128	5867826	307.375	Apollo	0.05
38151	331080	5867836	302.528	Apollo	0.03
38167	331104	5867845	303.332	Apollo	0.03
38163	331092	5867825	305.951	Apollo	0.03
38165	331111	5867832	305.825	Apollo	0.03
38166	331108	5867839	304.559	Apollo	0.03
38168	331103	5867848	302.817	Apollo	0.03
38170	331110	5867843	304.202	Apollo	0.02
38169	331106	5867846	303.391	Apollo	0.02
38034	331019	5867736	318.738	Gladys	13.90
38049	330963	5867794	307.932	Gladys	13.80
38041	331047	5867728	322.32	Gladys	11.40
38036	331029	5867739	320.145	Gladys	10.45
38016	330984	5867766	312.277	Gladys	9.98
38035	331019	5867736	318.738	Gladys	8.88
38014	330984	5867766	312.277	Gladys	5.19
38048	330963	5867794	307.932	Gladys	4.42
38031	331014	5867739	317.905	Gladys	4.24
38030	331003	5867729	317.218	Gladys	4.20
38028	331003	5867729	317.218	Gladys	4.03
38011	330960	5867797	306.902	Gladys	4.00
38027	331012	5867735	317.781	Gladys	2.94
38033	331014	5867739	317.905	Gladys	2.66
38019	331015	5867746	317.887	Gladys	2.52
38043	331055	5867742	322.486	Gladys	1.92
38046	330963	5867794	307.932	Gladys	1.88
38020	331008	5867738	317.448	Gladys	1.86
38032	331014	5867739	317.905	Gladys	1.52

		I.	L		
38026	331012	5867735	317.781	Gladys	1.28
38039	331047	5867728	322.32	Gladys	1.02
38038	331029	5867739	320.145	Gladys	0.93
38018	331015	5867746	317.887	Gladys	0.84
38042	331047	5867728	322.32	Gladys	0.72
38029	331003	5867729	317.218	Gladys	0.62
38015	330984	5867766	312.277	Gladys	0.54
38012	330960	5867797	306.902	Gladys	0.50
38050	330963	5867794	307.932	Gladys	0.31
38044	331055	5867742	322.486	Gladys	0.27
38040	331047	5867728	322.32	Gladys	0.23
38017	330984	5867766	312.277	Gladys	0.22
38037	331029	5867739	320.145	Gladys	0.17
38045	331055	5867742	322.486	Gladys	0.13
38013	330960	5867797	306.902	Gladys	0.12
38047	330963	5867794	307.932	Gladys	0.06
38105	330485	5867717	291.954	Golden Dyke	5.96
38107	330512	5867723	298.471	Golden Dyke	4.28
38097	330521	5867729	300.65	Golden Dyke	3.97
38068	330598	5867779	314.494	Golden Dyke	3.71
38106	330485	5867717	291.954	Golden Dyke	3.49
38096	330521	5867729	300.65	Golden Dyke	3.32
38051	330570	5867752	314.594	Golden Dyke	3.17
38059	330573	5867767	316.059	Golden Dyke	2.86
38103	330485	5867717	291.954	Golden Dyke	2.36
38056	330573	5867767	316.059	Golden Dyke	2.34
38094	330528	5867743	302.62	Golden Dyke	2.13
38092	330528	5867743	302.62	Golden Dyke	1.52
38064	330596	5867779	314.938	Golden Dyke	1.42
38090	330528	5867743	302.62	Golden Dyke	1.20
38101	330499	5867725	295.499	Golden Dyke	1.07
38098	330499	5867725	295.499	Golden Dyke	0.98
38108	330512	5867723	298.471	Golden Dyke	0.94
38063	330583	5867779	315.804	Golden Dyke	0.94
38062	330583	5867779	315.804	Golden Dyke	0.84
38061	330583	5867779	315.804	Golden Dyke	0.84
38052	330570	5867752	314.594	Golden Dyke	0.77
38100	330499	5867725	295.499	Golden Dyke	0.77
38093	330528	5867743	302.62	Golden Dyke	0.75
38067	330596	5867779	314.938	Golden Dyke	0.69
38054	330570	5867752	314.594	Golden Dyke	0.57
38060	330573	5867767	316.059	Golden Dyke	0.46
38070	330598	5867779	314.494	Golden Dyke	0.42
38072	330604	5867780	314.155	Golden Dyke	0.39
38102	330499	5867725	295.499	Golden Dyke	0.39
38071	330604	5867780	314.155	Golden Dyke	0.34
38069	330598	5867779	314.494	Golden Dyke	0.32
38065	330596	5867779	314.938	Golden Dyke	0.20
38095	330528	5867743	302.62	Golden Dyke	0.20

I		I	I		i.
38057	330573	5867767	316.059	Golden Dyke	0.19
38104	330485	5867717	291.954	Golden Dyke	0.19
38073	330604	5867780	314.155	Golden Dyke	0.13
38091	330528	5867743	302.62	Golden Dyke	0.11
38055	330570	5867752	314.594	Golden Dyke	0.10
38099	330499	5867725	295.499	Golden Dyke	0.08
38058	330573	5867767	316.059	Golden Dyke	0.06
38066	330596	5867779	314.938	Golden Dyke	0.06
38053	330570	5867752	314.594	Golden Dyke	0.05
38082	330751	5867862	299.741	Rising Sun / Gentle Annie	4.05
38078	330755	5867883	297.105	Rising Sun / Gentle Annie	3.44
38084	330770	5867869	298.454	Rising Sun / Gentle Annie	3.14
34308	330761	5867877	297.551	Rising Sun / Gentle Annie	3.13
38080	330751	5867862	299.741	Rising Sun / Gentle Annie	3.13
34305	330742	5867871	299.112	Rising Sun / Gentle Annie	2.31
38008	330733	5867909	293.986	Rising Sun / Gentle Annie	1.68
38081	330751	5867862	299.741	Rising Sun / Gentle Annie	1.67
38086	330770	5867869	298.454	Rising Sun / Gentle Annie	1.51
34307	330742	5867871	299.112	Rising Sun / Gentle Annie	1.24
38087	330770	5867869	298.454	Rising Sun / Gentle Annie	0.62
34306	330742	5867871	299.112	Rising Sun / Gentle Annie	0.44
38077	330755	5867883	297.105	Rising Sun / Gentle Annie	0.41
38085	330770	5867869	298.454	Rising Sun / Gentle Annie	0.34
38083	330751	5867862	299.741	Rising Sun / Gentle Annie	0.33
38009	330747	5867893	296.035	Rising Sun / Gentle Annie	0.15
38079	330755	5867883	297.105	Rising Sun / Gentle Annie	0.12
34309	330808	5867821	301.975	Rising Sun / Gentle Annie	0.05
38006	330733	5867909	293.986	Rising Sun / Gentle Annie	0.04
38088	330736	5867910	293.141	Rising Sun / Gentle Annie	0.03
38005	330733	5867909	293.986	Rising Sun / Gentle Annie	0.03
38089	330736	5867910	293.141	Rising Sun / Gentle Annie	0.02
38007	330733	5867909	293.986	Rising Sun / Gentle Annie	0.01
38076	330755	5867883	297.105	Rising Sun / Gentle Annie	0.00
38010	330747	5867893	296.035	Rising Sun / Gentle Annie	0.00
38004	330885	5867856	296.746	Root Hog	1.89
38003	330885	5867856	296.746	Root Hog	0.49
38002	330885	5867856	296.746	Root Hog	0.45
38001	330885	5867856	296.746	Root Hog	0.12
38021	330699	5867847	303.705	Windsor Castle	1.30
38074	330694	5867850	303.399	Windsor Castle	0.21
38023	330699	5867847	303.705	Windsor Castle	0.07
38022	330699	5867847	303.705	Windsor Castle	0.05
38075	330694	5867850	303.399	Windsor Castle	0.02

APPENDIX 4 JORC Table 1

Sampling Techniques and	
Data	
Criteria	Explanation
Sampling techniques	 Dump samples - material taken at random locations from the surface of old mine dumps. Gold mineralisation is evenly disseminated within the host rock and not confined to quartz veins. Samples were selected at random, with no bias towards lithological characteristics.
Drilling techniques	None
Drill sample recovery	• NA
Logging	 Samples were geologically recorded after sampling. Sampling is qualitative in nature.
Sub-sampling techniques and sample preparation	 Dry samples. Samples were dried, crushed and split for assay sample by the Laboratory. No duplicate samples or external CRMs were submitted. QC was entirely internal to the Laboratory. Sample weights ranged from 500gm to 1.5 kg which is appropriate for this style of mineralisation.
Quality of assay data and laboratory tests	 Gold was determined by 25 gm Aqua Regia digest and ICP-MS finish. For gold values > 1.0 ppm, samples re-submitted for gold determination by ICP-MS. As, Sb and other associated metals determined by 500 gm Aqua Regia digestion and ICP-AES reading.
Verification of sampling and assaying	• NA
Location of data points	Sample locations recorded by 12-channel GPS, averaged over time periods longer than 2 minutes.
Data spacing and distribution	• NA
Orientation of data in relation to geological structure	• NA
Sample security	Samples under control of Project Geologist or in locked & secure storage until despatch to Laboratory.
	None

(Criteria in this section apply to all succeeding sections.)

(Criteria listed in the preceding section also apply to this section.)

Reporting of Exploration Results Criteria	Explanation
Mineral tenement and land tenure status Exploration done by other parties	 Samples taken within EL4460, owned by Clonbinane Goldfield Pty Ltd, a wholly owned subsidiary company of Nagambie Mining Ltd. NA
Geology	 Gold mineralisation occurs as disseminated, fine gold in brecciated sediments and dolerite dykes.

Reporting of Exploration Results	
Criteria	Explanation
Drill hole Information	• NA
Data aggregation methods	In determining average grade of dump material, samples were aggregated with no weighting for each mine group.
Relationship between mineralisation widths and intercept lengths	• NĂ
Diagrams	Table with sample coordinates and broad location map provided.
Balanced reporting	• All sample results pertaining to this phase of the program are listed.
Other substantive exploration data	• NA
Further work	Shallow trenching followed by costeaning are proposed.